
1. A view of the VSO being currently implemented

A "VSO Provider" can be represented as follows:

Provider side interface

VSO interface at provider site

Non VSO Provider:
With a very light 
SOAP interface

VSO Engine to VSO provider side 
XML messaging exchange.
Broadly speaking there are two types 
of messages:
Time Query
Time Query - Observable
Note: They have different structure and 
also differ from provider to provider

VSO Engine to non VSO 
Provider:
This model assumes that 
the VSO knows about the 
database and storage 
structure on the provider. 
The provider only offers a 
soap endpoint with 
hopefully a generic way to 
run the SQL or/and OS 
commands.

Provider SDAC
VSO interface

Provider SHA
VSO Interface

Provider NSO
VSO Interface

Provider MSU
VSO Interface

There is no current 
unified design

VSO (UI)

VSO GUI

Figure 1

Figure 2



a. VSO ENGINE

Currently there is no unify implementation of it.

There are two attemps:

i.Stanford VSO GUI 

It is based mostly on a "VSO Provider" model

The GUI is currently hard wired to two types of soap calls.
A query time soap call

Different calls are made to each one of the providers
E.g.

Three calls for NSO
One for MSU
One for SDAC
One for SHA

A Query time-observable soap call
The same call message is used for all providers 

The VSO GUI  is able to perform a "JOIN" query. That's it to take the output of one call as
the input for the other, and display the output of both  accordingly.

ii.MSU VSO UI 

It is based on a "non VSO Provider" model. (There is no GUI interface yet)

.- It provides some generic way to call  using SOAP. 
.- The XML message structure is different from the Stanford implementation.

.- The complexity of the provider lies at the VSO side

.- Mostly intended for SQL queries

.- MSU and SDAC are current implementations

b. A tentative work ahead list from a technical perspective in
order to achieve point The VSO end product:

.-Define how the data will be structure within the VSO (VSO data model) and how would it be
represented. E.g. XML, perl hashes, tag pair values …
.- Decide what model will be centered to the VSO architecture regarding to the providers
.- Define a flexible UI and some rudimentary version of the VSO ENGINE see Figure 3.

E.g.
SOAP calls:

timeQuery (obsstart, obsend)
Input XML: 

<timeQuery>
<OBSSTART>YYYY-MM-DD hh:mm:ss TZ</OBSTART>

    <OBSEND> YYYY-MM-DD hh:mm:ss TZ</OBSTART>
</timeQuery>

Output XML: …

obsQuery(obsstart,obsend, observable, instrument)
…

.- Modify the GUI to use the VSO UI architecture

.- To instantiate the VSO engine in several locations: E.g. Stanford, NSO, MSU

.- Define a unified message exchange for the different VSO parts where posible.



2. The VSO end product

This is how I understand the VSO people sees the VSO.  Some of it might be just a product of my
imagination while others might be things I picked up from conversations and reading in VSO WEB
pages.

Non VSO Provider:
With a very light 
SOAP interface

VSO Engine to VSO provider side 
XML messaging exchange.
Broadly speaking there are would be a 
number of types of messages:
All of them will be the same for all 
VSO interfaces regardless of the 
Provider.

VSO Engine to non VSO 
Provider:
This model assumes that 
the VSO knows about the 
database and storage 
structure on the provider. 
The provider only offers a 
soap endpoint with 
hopefully a generic way to 
run the SQL or/and OS 
commands.

Several instances of 
VSO engine running in 
separate locations

Provider SDAC
VSO interface

Provider SHA
VSO Interface

Provider NSO
VSO Interface

Provider MSU
VSO Interface

VSO
ENGINE
VSO

ENGINE
VSO

ENGINE (UI)

VSO GUI

Figure 3



A view of the VSO Engine

The VSO Engine will be instantiated in several locations. The "Load Balance Manager and Cache
synchronizer" will ensure synchronization and optimal performance amond engines.

a. The UI

The VSO engine should provide the UI. The VSO UI can be similar to that of a UNIX system or/and a
relational database

I.e.
The VSO engine could implement a mechanism so a client(user) can :

execute a query given a XML message
E.g.
vsoquery(xml)

or/and
A number of wrapper functions that hide the xml complexities from the user

getdatadescr(obsstart, obsend, <keywork>, <value>, <options>, <value>, …)
getdata(description_id) # An interface to retrieve the data.

More particularized ones (dependent to language implementation C, Java, Perl, etc)
vsoquerytime(obsstart,obsend)
vsoqueryobsevable(obsstart,obsend, observable)
vsoqueryinstrument(obstart, obsend, intrument)
vsojoin(obsstart,obsend,<keyword>), where <keyword> is observable, instrument etc

….
Or a OO version
vsoquery(obstart,obsend)
vsoquery(obsstart,obsend, <keywork>)

Cache facility /
SQL engine

Load Balance Manager/
Cache synchronizer

Logging/security

SOAP kernel interface

Figure 4



Implement a virtual SQL engine (It can be a relational database)
where commands like
"select observable,  obsstart, obsend, instrument from VSO_PROVIDER where …"

or

"select  observable,  obsstart, obsend, instrument from  VSO_PROVIDER V1,
VSO_PROVIDER V2 where V1.obstart = "…." and V1.obstart = " …." and V1.obstart =
V2.obstart and V1.observable = " …" and V1.observable = V2.observable"

can be understood by the VSO Engine

ETC …

All these commands or interfaces will run from the user side, although effectively will be executed at
the VSO Engine. 

All the above will be supported by "kernel" like functions at the VSO Engine side that the user won't
have access to. Internally the argument to these functions will be solely XML, input and output.

b. Cache system:
The VSO engine will enquiry and get an up-to-date information on the provider holdings.
This caching mechanism can be made either by one big request or by incremental requests.
E.g.

exportdata(<provider>, <date>)   # The VSO provider will give a detail data export of their
holdings. 
That information can be cached a the VSO Engine side
for fast processing and SQL processing.

c. The GUI

The GUI will be a completely separate entitiy and will use the user interface in other to retrieve the
data. 


